Oceanographic modeling and data assimilation: Adapting tools to support MRV for CDR

Matthew Long

Climate & Global Dynamics Laboratory
National Center for Atmospheric Research

NSF

16 June 2022

Modeling frameworks to support ocean CDR & MRV

CDR processes & experimental framework

Observing system design Verification with sequential data assimilation

Data assimilation

Ocean physical and biogeochemical models

Modeling frameworks to support ocean CDR & MRV

CDR processes & experimental framework

Observing system design Verification with sequential data assimilation

Data assimilation

Ocean physical and biogeochemical models

Earth system models

Navier-Stokes: Equations are "exact", but cannot be solve analytically

General Circulation Models (GCMs) implement numerical solutions on discrete grid

Navier-Stokes: Equations are "exact", but cannot be solve analytically

General Circulation Models (GCMs) implement numerical solutions on discrete grid

Deterministic, but chaotic:

- Perpetual novelty
- Infinite sensitivity to initial conditions

Navier-Stokes: Equations are "exact", but cannot be solve analytically

General Circulation Models (GCMs) implement numerical solutions on discrete grid

Deterministic, but chaotic:

- Perpetual novelty
- Infinite sensitivity to initial conditions

Time

Navier-Stokes: Equations are "exact", but cannot be solve analytically

Primitive equation models:

- Numerical solutions on discrete grid
- General Circulation Models (GCMs)

Deterministic, but chaotic:

- Perpetual novelty
- Infinite sensitivity to initial conditions

Scale interactions: energy cascade requires parameterization of subgrid-scale effects

Biology sets upper ocean DIC budget

Dissolved inorganic carbon
$$DIC = \begin{bmatrix} \mathsf{H}_2\mathsf{CO}_3^* \end{bmatrix} + \begin{bmatrix} \mathsf{HCO}_3^- \end{bmatrix} + \begin{bmatrix} \mathsf{CO}_3^{2-} \end{bmatrix} \\ \sim 0.5\% \qquad \sim 88.6\% \qquad \sim 10.9\%$$

Biology sets upper ocean DIC budget

Ecosystem function controls **C** export

There are no universally-accepted governing equations:

- Plankton function types
- Transfer functions

Biology sets upper ocean DIC budget

Ecosystem function controls **C** export

There are no universally-accepted governing equations:

- Plankton function types
- Transfer functions

Explicit carbon chemistry

Dissolved inorganic carbon
$$DIC = \begin{bmatrix} \mathsf{H}_2\mathsf{CO}_3^* \end{bmatrix} + \begin{bmatrix} \mathsf{HCO}_3^- \end{bmatrix} + \begin{bmatrix} \mathsf{CO}_3^{2-} \end{bmatrix} \\ \sim 0.5\% \qquad \sim 88.6\% \qquad \sim 10.9\%$$

Biology sets upper ocean DIC budget

Ecosystem function controls **C** export

There are no universally-accepted governing equations:

- Plankton function types
- Transfer functions

Explicit carbon chemistry

Dissolved inorganic carbon
$$DIC = \begin{bmatrix} \mathsf{H}_2\mathsf{CO}_3^* \end{bmatrix} + \begin{bmatrix} \mathsf{HCO}_3^- \end{bmatrix} + \begin{bmatrix} \mathsf{CO}_3^{2-} \end{bmatrix} \\ \sim 0.5\% \qquad \sim 88.6\% \qquad \sim 10.9\%$$

Biology sets upper ocean DIC budget

Ecosystem function controls **C** export

There are no universally-accepted governing equations:

- Plankton function types
- Transfer functions

Explicit carbon chemistry

Models are built at the process-level; simulations show emergent features

Modeling frameworks to support ocean CDR & MRV

CDR processes & experimental framework

Observing system design Verification with sequential data assimilation

Data assimilation

Ocean physical and biogeochemical models

Data assimilation

Free-running models display systematic bias

DA can produce a model-data state
estimate ("reanalysis"), reducing bias

DA provides model states that are maximally consistent with observations

DA can provide explicit uncertainty estimates and assessments of which observations are most important

Two approaches:

- Sequential ensemble DA (filter)
- Variational methods (smoother)

Ensemble data assimilation

Integrate ensemble of models

Ensemble data assimilation

Integrate ensemble of models

Observation

Ensemble data assimilation

Integrate ensemble of models

Sample models like the data

Ensemble data assimilation

Integrate ensemble of models

Sample models like the data

Add "increments" to model states to improve fit to data

Ensemble data assimilation

Integrate ensemble of models

Sample models like the data

Add "increments" to model states to improve fit to data

Continue integration

Ensemble data assimilation

Integrate ensemble of models

Sample models like the data

Add "increments" to model states to improve fit to data

Continue integration

Challenges and shortcomings

Adding increments to the state can break the model physics

Two often-necessary tools: inflation and localization

Variational methods solve an iterative optimization problem to minimize an objective function

Example: the ECCO state estimate

Atmospheric boundary conditions

Wind stress

Radiation

Freshwater fluxes
(E-P-R)

Control variables, **u**

Initial conditions T(0), S(0)

Variational methods in practice: the ECCO state estimate

Inverse problem solved by ECCO

Solve for a set of

- initial conditions,
- atmospheric boundary forcing,
- ocean mixing parameters,

to minimize residuals between the model solution and the observations in a least-squares sense.

Advantages

- Conserves ocean properties
- Uses information from past and future to constrain state (smoother rather than a filter)

Disadvantages

- Can generate spurious fluxes, e.g. in Lab. Sea
- No "errors of the day"
- No uncertainty quantification
- Expensive to maintain adjoint

Modeling frameworks to support ocean CDR & MRV

CDR processes & experimental framework

Observing system design Verification with sequential data assimilation

Data assimilation

Ocean physical and biogeochemical models

Optimization of observing location

What is an optimal sampling strategy to best constrain a quantity of interest (i.e., "verification variable")?

Optimization of observing location

What is an optimal sampling strategy to best constrain a quantity of interest (i.e., "verification variable")?

Optimal observing system design

What is an optimal sampling strategy to best constrain a quantity of interest (i.e., "verification variable")?

Modeling frameworks to support ocean CDR & MRV

CDR processes & experimental framework

Observing system design Verification with sequential data assimilation

Data assimilation

Ocean physical and biogeochemical models

MRV Challenges

Unfavorable signal-to-noise ratios

- Large background fields
- Dynamic variability

Establishing baseline counterfactual to assess additionality

Large spatiotemporal scales

- Slow CO₂ equilibration timescale
- Large-scale overturning circulation

Model skill and parameter uncertainty

Unknown unknowns

- Ecosystem compensation

Ocean alkalinity enhancement

Ocean alkalinity enhancement

Ocean alkalinity enhancement

Results from idealized experiments

Simulated alkalinity release (CESM 0.1°)

Particle dispersion modeling

Lagrangian (i.e., flow-following) frameworks provide complementary information to GCMs

Particles can be advected in precomputed velocity fields

Quantify dispersion and trajectories

Possible to sample properties and compute transformations along particle paths

Lagrangian back-trajectories & footprints computed for aircraft samples

Global MacroAlgae Cultivation MODelling System (G-MACMODS)

Courtesy of I. Arzeno (UCI) Frieder et al. (2022)

Projecting potential macroalgae yields: uncertainty in parameters

Uncertainty analysis around biological parameters:

- Maximum uptake rate
- Half saturation constant
- Compensation irradiance
- Saturation irradiance
- Maximum growth rate
- Crowding
- · Ratio of biomass to surface area
- Minimum nitrogen cell quota
- Max nitrogen cell quota
- Drag coefficient
- Nitrogen exudation rate
- Mortality rate

n = 400 Monte Carlo runs for each seaweed group and each nutrient scenario (ambient and flux-limited)

Courtesy of I. Arzeno (UCI)

Separation of concerns: mapping re-emergence timescales

Fraction of carbon remaining sequestered after injection at depth

Experimental framework for MRV

Experimental framework for MRV

Experimental framework for MRV

Computation and data constraints

Computational constraints

Develop creative solutions

E.g., geophysical modeling + machine learning

Need hierarchy of modeling tools tailored to questions of interest

- Modeling systems built from interoperable components
- Enable bespoke sandboxes

Interoperability between modular components

Modularity: facilitated by coupling infrastructure

Enable "mix-and-match" capabilities

Leverage interoperability to

- Isolate and study processes
- Explore structural uncertainty
- Leverage communities of practice

Marine Biogeochemical Library (MARBL)

$$\frac{\partial \varphi}{\partial t} + \nabla \cdot (\vec{u}\varphi) - \nabla \cdot (K\nabla\varphi) = \int J(\varphi)$$

Computation and data constraints

Big Data

Computation for *analysis* is a serious effort

- Collaborative development
- Data science/ML

Decision support "dashboards"

Computational Narratives: Platforms for community & policy engagement

Earth System Data Science

projectpythia.org

Modeling frameworks to support ocean CDR & MRV

CDR processes & experimental framework

Observing system design Verification with sequential data assimilation

Data assimilation

Ocean physical and biogeochemical models

Proposal

\$10M

Bespoke modeling applications

\$10M

Highly resolved observational deployments

